
Scalable Multi-Device SLAM
Jack Morrison, Dorian Gálvez-López, and Gabe Sibley

School of Engineering and Applied Science
George Washington University

Washington, DC 20052
{jackmorrison, dorian, gsibley}@gwu.edu

Abstract—This paper is concerned with enabling distributed
3D mapping and map sharing. The proposed approach allows
users with mobile devices to collectively construct, stream and
share a scalable model of the world. The resulting maps are
accurate and allow for precise six-degree-of-freedom localization.
Particular effort is paid to ensure that the system is scalable in
both spatial extent and number of simultaneous users. Using a
relative manifold provides a unified representation that is both
amenable to simultaneous asynchronous access and easily scales
with new data. This enables multi-session map building and
concurrent map fusion by detecting cross loop closures. Maps
are built to be invariant to the sensing camera to support het-
erogeneous sensors. This paper demonstrates this capability on
cellphone video and IMU data, showing crowdsourced mapping
from multiple devices.

I. OVERVIEW

Present day cellphones are ubiquitous, computationally
powerful and have increasingly high-quality sensors and dis-
plays. Many of the devices on the market are already capable
of significant computation and, of course, are frequently con-
nected to the Internet, allowing for global communications.
With these devices, there is a great opportunity to make
crowdsourced 3D mapping a reality.

Mapping the world with mobile devices puts mapping
capabilities in the hands of millions of existing cellphone
users. With on-device mapping, a cellphone can become an
integrated part of the physical world. This, however, will
require a mapping solution which can enable multiple devices
to simultaneously query and update a global map.

Existing SLAM solutions do not scale well enough to
withstand crowdsource size maps. Previous multi-device or
multi-session sub-mapping solutions solve the problem by
connecting multiple locally independent and metric maps, but
this can cause problems when local sub-maps overlap and
requires the system to choose an “active” sub-map to track.
Other approaches require expensive fusion operations when
joining maps, due to their privileged frame representations.
Both of these approaches have scaling limitations.

This paper presents a system for simultaneously building
and sharing large-scale 3D maps from multiple monocular
mobile devices. It describes infrastructure, algorithms and core
data structures for building and sharing arbitrarily scalable
visual maps.

The presented system operates in a client-server architec-
ture, receiving and distributing maps from servers that provide
endpoints for map related queries. By operating behind a

simple API, the system allows clients to easily integrate server
queries into their processing when a network connection is
available. The server API is also purely image driven, remov-
ing the need for an accurate global location when interacting
with the server.

II. RELATED WORK

Previous approaches to multi-device mapping fall largely
into two camps: “hybrid” sub-mapping techniques and priv-
ileged frame fusion approaches. In fully fixed frame repre-
sentations, like [14], an expensive map merging algorithm is
required to join measurements and objects in multiple maps
together. These approaches offer simplicity in representation,
but would not scale well because of the need to reprocess all
data before merging maps. The sub-mapping techniques are
based on limited-area metric maps, such as the occupancy
grids used in [4] or the planar AR workspaces employed
in the multiple map extension to PTAM [7], PTAMM [3].
These approaches apply a priviliged frame SLAM algorithm
to populate their maps, but in order to bound complexity,
after a map’s extent has grown too large they initialize a
new and fully independent metric map. In PTAMM, they
reuse their existing relocalization techniques to switch the
system’s focus between maps, and in both [4, 10], they connect
maps using topological linkages based on odometry or “anchor
nodes”. These approaches recognize the bounds of privileged
frame representations, but still maintain a dependency on
them. In their conclusion Castle et al. [3] discuss future
work opportunities that this paper deals with, including IMU
integration and the fusion of many sequences.

Forster et al. [5] and Riazuelo et al. [12] present a multi-
threaded method for building maps using Micro Aerial Vehi-
cles (MAVs) and mobile robots. Their approaches both seek
to decouple the motion estimation and map building pipelines
by communicating keyframe information to a central station
where it is fused into a cohesive map structure. Loop closure
events and map construction are handled on this central station
while the client is left to perform visual odometry with only
the map it is provided by the server. These solutions lower the
computational cost on the client, but can reduce its autonomy
in the face of itermittent networking. In contrast, our system
allows clients to create individual maps even if connection to
the server is lost. Individual maps are fused by cross loop
closures yielded by the server, as done by McDonald et al.
[9]. However, unlike them, we do not require to extract new



features to perform this operation since we exploit the features
tracked by the front-end. In addition, we reuse the map graph
to check for loop consistency.

III. SYSTEM DESCRIPTION

A. Architecture

Map

Loop 
ClosureFront End

API

Camera
Place QueryMap Transfer

Keyframes

Client

IMU

Map Loop 
Closure

Server

Fig. 1. System Architecture Outline

The system described here is divided into a client-server
model, as shown in Figure 1. The client has all the capabilities
for SLAM, including map-building and loop closure, while the
server is used as a repository for storing maps from multiple
sessions. This design allows the client to operate completely
on its own when a network connection is unavailable.

The main components of the client, which run on separate
threads, are the front-end and the loop closure subsystem. The
front-end is responsible for the bulk of the SLAM pipeline
including image processing, feature tracking, visual-inertial
pose and landmark estimation, and map building. The loop
closure back-end receives notifications of new keyframes from
the front-end thread and is responsible for detecting loops
in the client’s trajectory. The loop closure system is tightly
integrated with the map generated by the front-end, reusing
its measurement points on keyframes. Both threads interact
asynchronously with the server through its API. The server
system is responsible for large-scale storage of maps and for
answering loop-closure style place queries across its entire
database of SLAM sessions.

At the heart of this system is its relative map data structure.
The map is a relative pose-graph with metric landmark infor-
mation stored in its node of the graph. The relative framework
is key to this system’s scalability and ease of use. The same
map system is used by both client and server. It allows for
persistent map storage and bounded RAM usage to ensure
constant resource utilization for long-term performance.

B. Relative Manifold

The key to the approach presented here is the single, seam-
less map structure that can be shared across multiple devices.

Fig. 2. Graphical representation of the constraints after loop closure.

The map is represented as in RSLAM [11]: by an undirected
graph of nodes, representing key frames, connected by trans-
formation edges which encode a pose estimate between a pair
of frames. The frames carry landmarks and measurements of
landmarks. To allow the reuse of patches identified in the
cameras of other devices, the camera calibration used for each
session is also stored.

Each of the objects in the system have an identification
structure which refers back to the map building session during
which they were created. Every session receives a UUID which
is used to label frames, edges, measurements, and landmarks
created as a part of that session. Additionally, the camera
calibration used during each session is associated with a
session UUID for later retrieval. The identification hierarchy
provides uniqueness of sessions, frames, measurements, and
landmark references during processing and transfer. In this
way, the server and client can be confident that they are
referring to the same data.

Unlike single-frame representations, the relative graph struc-
ture of RSLAM allows sections of mapped environments to
be referenced independent of other mapped locations. There is
no need to transmit the entire graph or transform nodes before
interacting with them. The ability to interact and independently
alter sections of the map is important for many operations,
including loop closures and multi-session mapping. This is
also key to making downloaded sections of map available
immediately. The system does not depend on knowledge of
a global coordinate frame to make use of frames, so pieces of
the global map may be downloaded as they are made available,
or as bandwidth allows.

C. Distributed Mapping

To distribute and aggregate maps, our system is designed
in a client-server architecture. The server is a centralized
repository for map information, including (possibly disjoint)
maps, camera calibrations, and place matching (loop closure)
information. The server’s role is to act as a hub for distributing
this information to connected clients.

The server API has three request types: place queries,
downloads, and uploads.



1) Place Query: The client uploads an image to the server
to be matched against the server’s database of places. Each
place on the server is correlated with a key frame, so when
a match is made, that key frame is loaded and the relative
position of the query image is estimated. A new edge that
connects the query frame and the matched frame is returned
to the client. Through this edge, the local BFS operation can
access and include landmarks from the downloaded session
and use them in localization.

2) Map Download: The client can request a section of the
graph by specifying a frame ID and a depth to which it would
like a breadth-first search to be performed. This search will
gather frames, edges, camera calibrations, and all associated
metadata, and return it to the requesting client. The result
also includes “leaves” of the graph, nodes which were not
downloaded but are at the edge of the fetched map. This gives
the client locations to possibly request more map, if it requires
it.

3) Map Upload: The client serializes frames, edges and
associated places and send them to the server for later querying
by other devices. These are inserted into the server’s databases,
which fuses them automatically if there are any conjoining
edges.

D. Loop Closure

For every keyframe created during a mapping session, the
loop closure system tries to detect places that have been
already visited by this or any other session, so that it may close
a loop or join two disconnected maps. The place matching
is fully integrated in the system and takes advantage of the
information available on the clients and on the server. Each of
them integrates the loop detector by Gálvez-López and Tardós
[6] into its map graph and operate in the same way. They store
a database to describe places as bags of binary words by using
a single hierarchical vocabulary comprising 105 words, trained
offline with millions of features obtained from independent
data.

The client computes ORB [13] descriptors around the
features tracked by the front-end. This provides a low number
of points that are highly repeatable, are well distributed around
the image and are associated to landmarks with estimated 3D
poses. In addition, we avoid the overhead of computing new
features by reusing the map’s key points. These descriptors
are converted into a bag-of-words vector and the database is
queried. The top-100 candidate matches are grouped together
if their reference frames are close in the map, and the group
with the highest aggregated similarity score is kept. If the
system runs with a stereo camera or an IMU and the map
is then scaled, we measure distances between frames in the
Euclidean space, otherwise, we compute the geodesic distance.
To avoid false detections, the candidates are accumulated
until subsequent queries are resolved. When at least 3 of
them are close each other, we try to close the loop. For
that, by comparing ORB descriptors, we obtain 2D-to-3D
correspondences between the current image and the matched
3D landmarks. Solving the perspective-n-problem yields a

relative transformation that is later optimized by including
other measurements.

If a transformation can be found through PnP, the place
match is accepted and an edge is added to the map between the
querying frame and the matched frame. Through the relative
manifold structure, all landmarks on the matched frame and
nearby frames are now available to the front-end for local-
ization, including any frames which were downloaded from a
server. This O(1) operation is the entirety of “map fusion” in
this system and is the main drive behind its efficiency.

The server operates as described above, but manages a larger
joint map that comprises the places visited by each client.
Thus, after consecutive place query requests are consistently
satisfied, an edge is added between two different session maps,
as shown in Figure 2.

IV. RESULTS

A. Performance of Feature Tracks for Loop Detection

TABLE I
PERFORMANCE OF FEATURES FOR LOOP DETECTION

Features Computation time (ms/image) Number of detections
ORB 50 7.0 66
ORB 100 7.8 105
ORB 300 8.7 115
Tracks (≈ 52) 1.4 107

To demonstrate the performance of using the tracked fea-
tures in the loop detection stage, the system was run on a
dataset containing 1639 stereo images in which the camera
describes a figure-eight-shaped trajectory that is traversed three
times, yielding around 200 revisited places. The front-end
feature tracks were compared with the features yielded by the
ORB keypoint detector from OpenCV [2], which does not take
into account the distribution of the points in the image, or their
persistence across frames.

Table I shows the time required to compute the features and
the number of loops detected with them. The average number
of tracks in this sequence was 52 per image. By using tracked
features extra keypoint extraction time is avoided without any
loss of performance in the loop detector.

B. Multi-session Map Joining

We processed three short urban trajectories using the client-
server system and overlay their combined paths on a map in
Figure 3. We recorded IMU and images on a modern mobile
device and then replayed the data on a laptop to capture system
behavior. The figure shows the potential for streaming map
data to the cloud and back to devices for reuse. This small
image displays approximately 900 m of device trajectory,
which is built by transmitting it in segments, as updates are
desired.

V. DISCUSSION

Our proposal presents the first steps towards an architecture
for long-term SLAM that addresses scalability. There are
open avenues for improvement, however. For instance, our



Fig. 3. Urban Multi-Session Map

loop detection method is based on a single visual vocabulary.
Previous research has shown that this approach is suitable
for heterogeneous environments mapped with very different
cameras [6]. Our next step is to research the limits of this
approach when mapping trajectories of hundreds of kilometers.
On the other hand, no algorithm is completely exonerated
from false positives under all circumstances. Thus, long-term
robustness can be achieved by applying a recent technique
such as Realizing, Reversing, and Recovering (RRR) [8],
which accumulates several loop hypotheses to remove later
those that are inconsistent. Inconsistencies in uploaded maps
have also not been addressed yet, but may be addressed by
applying a consensus policy [1] to reject bad maps.

The independence of subsections of the map structure
presented here makes horizontal scaling a potentially valuable
future work direction. Currently the system is based around
a single server, but extending the system to distribute map
endpoints should be straight forward thanks to the underlying
structures and the globally unique identifiers. Additionally,
more work is planned on the server-side curation of maps,
including large-scale bundle adjustments, additional inter-
session joins and map sparsification. These additions could
improve map accuracy and compactness.

To conclude, this paper presented a new client-server based
system for joining maps created from mobile devices. The mo-
bile client runs a full SLAM pipeline to allow for autonomous
operation and the system’s server component is responsible
for large-scale map storage and map distribution. This system
is based on a relative map structure and globally unique
identification tags which allow scalable growth. The results
presented in this paper came from relatively short selections
of data, but qualitative results are promising and larger scale
experiments are planned.

REFERENCES

[1] R. Aragues, J. Cortes, and C. Sagues. Distributed
consensus on robot networks for dynamically merging
feature-based maps. IEEE Transactions on Robotics, 28
(4):840–854, Aug 2012.

[2] G. Bradski. Dr. Dobb’s Journal of Software Tools, 2000.
[3] Robert O. Castle, Georg Klein, and David W. Murray.

Wide-area augmented reality using camera tracking and
mapping in multiple regions. Computer Vision and Image
Understanding, 115(6):854–867, June 2011.

[4] H.J. Chang, C. S G Lee, Y.C. Hu, and Yung-Hsiang
Lu. Multi-robot SLAM with topological/metric maps. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2007. IROS 2007, pages 1467–1472, 2007.

[5] Christian Forster, Simon Lynen, Laurent Kneip, and
Davide Scaramuzza. Collaborative monocular SLAM
with multiple micro aerial vehicles. In Intelligent Robots
and Systems (IROS), 2013 IEEE/RSJ International Con-
ference on, pages 3962–3970. IEEE, 2013.

[6] Dorian Gálvez-López and J. D. Tardós. Bags of binary
words for fast place recognition in image sequences.
IEEE Transactions on Robotics, 28(5):1188–1197, Oc-
tober 2012.

[7] Georg Klein and David Murray. Parallel tracking and
mapping for small AR workspaces. In Mixed and
Augmented Reality, 2007. ISMAR 2007. 6th IEEE and
ACM International Symposium on, pages 225–234. IEEE,
2007.

[8] Yasir Latif, César Cadena, and José Neira. Robust loop
closing over time for pose graph SLAM. The Interna-
tional Journal of Robotics Research, 32(14):1611–1626,
2013.

[9] J McDonald, M Kaess, C Cadena, J Neira, and
JJ Leonard. Real-time 6-DOF multi-session visual
SLAM over large-scale environments. Robotics and
Autonomous Systems, 61(10):1144–1158, 2013.

[10] John McDonald, Michael Kaess, Cesar Cadena, Jos
Neira, and John J Leonard. 6-DOF multi-session visual
SLAM using anchor nodes. In European Conference on
Mobile Robotics, Orbero, Sweden, volume 13, 2011.

[11] Christopher Mei, Gabe Sibley, Mark Cummins, Paul
Newman, and Ian Reid. RSLAM: a system for large-scale
mapping in constant-time using stereo. International
Journal of Computer Vision, 94(2):198–214, September
2011.

[12] L. Riazuelo, Javier Civera, and J.M.M. Montiel. C2TAM:
a cloud framework for cooperative tracking and mapping.
Robotics and Autonomous Systems, 62(4):401–413, April
2014.

[13] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary
Bradski. ORB: an efficient alternative to SIFT or SURF.
In IEEE International Conference on Computer Vision,
pages 2564–2571. IEEE, 2011.

[14] N. Ergin zkucur and H. Levent Akn. Cooperative multi-
robot map merging using fast-SLAM. In Jacky Baltes,
Michail G. Lagoudakis, Tadashi Naruse, and Saeed Shiry
Ghidary, editors, RoboCup 2009: Robot Soccer World
Cup XIII, number 5949 in Lecture Notes in Computer
Science, pages 449–460. Springer Berlin Heidelberg,
January 2010.


	Overview
	Related Work
	System Description
	Architecture
	Relative Manifold
	Distributed Mapping
	Place Query
	Map Download
	Map Upload

	Loop Closure

	Results
	Performance of Feature Tracks for Loop Detection
	Multi-session Map Joining

	Discussion

